Recombinant Granulocyte Colony Stimulating Factor
GCSF
(Filgrastim Injection)

Each prefilled syringe of 0.9ml contains: 300 mcg of Filgrastim
Each prefilled syringe of 0.9ml contains: 480 mcg of Filgrastim

Description:
Recombinant GCSF (Filgrastim) is a 175 amino acid protein manufactured by recombinant DNA technology. It is produced by Escherichia Coli (E.Coli) bacteria into which the human granulocyte colony-stimulating factor gene has been inserted. Recombinant G-CSF has a molecular weight of 18,800 daltons. The protein has an amino acid sequence that is identical to the natural G-CSF except for the addition of an N-terminal methionine necessary for expression in E-Coli.

Preclinical Pharmacology:
Biological activity of recombinant human G-CSF (Filgrastim) was assessed by in-vitro assay using NFS-60 cell (murine myeloblastic cell lines) and compared with the reference standard from National Institute of Biological Standards and Controls (NIBSC). The biological comparable to the specific activity of reference standard.
The relative potency of Filgrastim was assessed in an in-vivo assay using neutropenic mice, and comparing it with the reference standard. In this test, both the test and reference drug were found comparable and equipment. Acute toxicity studies were conducted in rats and mice by administering I.V. and S.C. single doses of 250, 2500 and 5000 mcg/kg of Filgrastim. The animals were observed for mortality, clinical signs and gross organ examinations. There was no death or any other adverse effect in the animals at all the dose levels. In repeat dose subacute toxicity studies in rats and mice a dose of 50, 100, 250mcg/kg was administered for a period of 28 days by S.C. and IV routes. The animals were examined for body weight changes, food consumption, blood chemistry and histopathological examination of body organs. There was no abnormality detected in any of the parameters in both the animals. Filgrastim was well tolerated in low, medium and high dose levels in these studies.

Clinical Pharmacology:
Endogenous G-CSF is a lineage specific colony-stimulating factor, which is produced by monocytes, fibroblasts, and endothelial cells. G-CSF regulates the production of neutrophils within the bone marrow and affects neutrophil progenitor proliferation, differentiation and selected end-cell functional activation (including enhanced phagocytic ability, priming of the cellular metabolism associated with respiratory burst, antibody dependent killing and the increased expression of some functions associated with cell surface antigens).

Pharmacologic Effects of Recombinant G-CSF
In patients with various nonmyeloid malignancies, Recombinant G-CSF administration results in a dose-dependent increase in circulating neutrophil counts. With discontinuation of Recombinant G-CSF therapy, neutrophil counts returns to baseline in most cases within 4 days, isolated neutrophils displays normal phagocytic (measured by zymosan-stimulated chemoluminescence) and chemotactic (measured by migration under agarose using NO-formyl-methionyl-leucyl-alanine[fMLP] as the chemotaxin) activity in vitro.

The absolute monocyte count is reported to increase in a dose-dependent manner in most patients receiving Recombinant G-CSF. However, the percentage of monocytes in the differential count remains within normal range. Absolute counts of both eosinophils and basophils do not change and are within the normal range following administration of Recombinant G-CSF. Increase in lymphocyte counts following Recombinant G-CSF administration have been reported in some normal subjects and cancer patients.

White blood cell (WBC) differentials obtained during clinical trials have demonstrated a shift towards earlier granulocyte progenitor cells (left Shift), including the appearance of promyelocytes and myeloblasts, usually during neutrophil recovery following the chemotherapy induced nadir. In addition, Dohle Bodies, increased granulocyte granulation, as well as hypersegmented neutrophils have been observed, Such changes are transient, and are not associated with clinical sequelae nor are they necessarily associated with infection.

Pharmacokinetics
Absorption and clearance of Recombinant G-CSF follows first-order pharmacokinetic modeling without apparent concentrating dependence. A positive linear correlation occurs between the parenteral dose and both the serum concentration and area under the concentration-time curves.
Continues IV infusion of 200mcg/kg of Recombinant G-CSF over 24 hours results in mean and median serum concentrations of approximately 48 and 56ng/ml, respectively. Subcutaneous administration of 3.45mcg/kg and 11.5 mcg/kg result in maximum serum concentrations of 4 and 49ng/ml, respectively within 2 to 8 hours. The volume of distribution averages 150ml/kg in both normal subjects and cancer patients. The elimination half life, in both normal subjects and cancer patients, is approximately 3.5hours Clearance rates of Recombinant G-CSF is approximately 0.5 to 0.7 mL/minute/kg. The half –lives are similar for IV administration (231 minutes, following doses of 34.5 mcg/kg) and for SC administration (210 minutes, following Recombinant G-CSF doses of 3.45 mcg/kg). Pharmacokinetic data in geriatric patients (>65 years) are not available.

Clinical Effects:
Cancer Patients Receiving Myelosuppressive Chemotherapy:
Recombinant G-CSF has been shown to be safe and effective in accelerating the recovery of neutrophil counts following a variety of chemotherapy regimens. In a phase 3 clinical trial, patients received SC administration of Recombinant G-CSF(4 to 8mcg/kg/day, days 4 to 17) or placebo. The benefits of Recombinant G-CSF therapy were shown to be prevention of infection as manifested by febrile neutropenia, decreased hospitalization and decreased IV antibiotic usage.
Several other studies, which did not directly measure the incidence of infection, but which did measure increases in neutrophils, support the efficacy of Recombinant G-CSF.
Patients with acute Myeloid Leukemia Receiving Induction or Consolidation Chemotherapy:
Treatment with Recombinant G-CSF significantly reduced the median time to ANC recovery and the median duration of fever, antibiotic use and hospitalization following induction chemotherapy. During consolidation therapy, patients treated with Recombinant G-CSF also experienced significant reductions in the incidence of severe neutropenia, time to neutrophil recovery, the incidence and duration of fever and in the durations of IV antibiotic use and hospitalization.
Patients treated with a further course of standard or high-dose consolidation chemotherapy also experienced significant reductions in the duration of neutropenia.

Cancer Patients Receiving Bone Marrow Transplant
In patients with Hodgkin’s disease (HD) and non-Hodgkin’s lymphoma (HNL) treated with myeloablative chemotherapy and autologous bone marrow transplantation (ABMT), a statistically significant reduction in the median number of days of severe neutropenia (ANC<500 mm³) occurred in the Recombinant G-CSF-treated group versus the control group (21.5 days in the control group and 10 days in both treatment groups, p<0.00a). The number of days of febrile neutropenia was also reduced significantly (13.4 days in control group, 5 days in the 10mcg/kg/day group, and 5.5 days in the 20-mcg/kg/day group [5 days in the combined treatment groups p<0.0001]). There were no effects on red blood cell or platelet levels.

Efficacy of Filgrastim in Indian patients:
The efficacy and safety of Filgrastim was evaluated in a prospective randomized double blind placebo controlled phase-III clinical trial in Indian patients with chemotherapy – induced neutropenia. The patients were evaluated for magnitude of neutropenia (median ANC) and days of recovery.

The patients were allocated into two groups: One group received Injection Filgrastim 5micro gram/Kg/day and other group received Placebo till ANC (Absolute Neutrophil Count) were normal or maximum up to 10 days duration.

The efficacy parameters ANC were measured at baseline and daily till counts normalized. The safety parameters (CBC, Blood Sugar, S Creatinine) were evaluated at baseline, Day -3, Day-7 and Day-10.

The primary efficacy parameter ANC recorded in patients on G-CSF at baseline was 1.310.55 which increase to 4.344.8 (p <0.05), on Day-2 & Day-3 to 3.911.9 (P<0.001).

The patient on placebo recorded ANC at baseline 0.920.68 & increased to 1.21.09 on Day-2 & 1.692.12 on Day-3 insignificantly.

At the end of three days treatment the patients on G-CSF attained normal ANC>(p<0.05), in contrast to placebo group given for 10 days.

There were no adverse events & safety parameters were within normal limits at baseline, day-3, day-7 & day-10.

Filgrastim was more efficacious than placebo in reverting neutropenia to normal range within 3 days & had optimum safety.

The drug was well tolerated in all the patients and no significant adverse effect was reported with Filgrastim in this study.

Indications and Usage:
Cancer Patients Receiving Myelosuppressive Chemotherapy
Recombinant G-CSF is indicated to decrease the incidence of infection, as manifested by febrile neutropenia, in-patients with nonmyeloid malignancies receiving myelosuppressive anti-cancer drugs associated with a significant incidence of severe neutropenia with fever. A complete blood count (CBC) and platelet count should be obtained prior to chemotherapy and twice per week during Recombinant G-CSF therapy to avoid leukocytosis and to monitor the neutrophil count.

Patients with Acute Myeloid Leukemia Receiving Induction or Consolidation Chemotherapy.
Recombinant G-CSF is indicated for reducing the time to neutrophil recovery and the duration of fever, following induction or consolidation chemotherapy treatment of adults with AML.

Cancer Patients Receiving Bone Marrow Transplant
Recombinant G-CSF is indicating to reduce the duration of neutropenia and neutropenia-related clinical sequelae, e.g. febrile neutropenia, in-patients with nonmyeloid malignancies undergoing myeloablative chemotherapy followed by marrow transplantation. It is recommended that CBCs and platelet counts be obtained at a minimum of 3 times per week following marrow infusion to monitor the recovery of marrow reconstitution.

Patients Undergoing Peripheral Blood Progenitor Cell Collection and Therapy
Recombinant G-CSF is indicated for the mobilization of hematopoietic progenitor cells into the peripheral blood for collection by leukapheresis. Mobilization allows for the collection of increased numbers of progenitor cells capable of engraftment compared with collection by leukapheresis without mobilization or bone marrow harvest.

CONTRAINDICATIONS
Recombinant G-CSF is contraindicated in patients with know hypersensitivity to E.coli-derived proteins. Recombinant G-CSF, or any component of the product.

WARNING
Allergic-type reactions occurring on initial or subsequent treatment have been reported. These have generally been characterized by systemic symptoms involving, most often skin (rash, urticaria, facial edema), respiratory (wheezing, dyspnea)and cardiovascular (hypotension, tachycardia) system.
Rapid resolution of symptoms occurred in most cases after administration of antihistamines, steroids, bronchodilators, and/or epinephrine. Symptoms recurrent in more than half the patients who were rechallenged.
Left upper abdominal paid or shoulder tip paid accompanied by rapid increase in spleen size should be carefully monitored due to the rare but serious risk of splenic rupture.

PRECAUTIONS

General

Simultaneous Use with Chemotherapy and Radiation Therapy

The safety and efficacy of Recombinant G-CSF given simultaneously with cytotoxic chemotherapy have not been established. Because of the potential sensitivity of rapidly dividing myeloid cells to cytotoxic chemotherapy, do not use Recombinant G-CSF in the period 24 hours before through 24 hours after the administration of cytotoxic chemotherapy. The Safety and efficacy of Recombinant G-CSF have not been evaluated in patients receiving concurrent radiation therapy. Simultaneous use of Recombinant G-CSF with chemotherapy and radiation therapy should be avoided.

The safety of Recombinant G-CSF chronic myeloid leukemia (CML) and myelodysplasia has not been established.

Leukocytosis

White blood cell counts of 100,000/mm3 or greater are observed in approximately 2% of patients receiving Recombinant G-CSF at doses above 5mcg/kg/day. There were no reports of adverse events associated with this degree of leukocytosis. In order to avoid the potential complications of excessive leukocytosis, a CBC is recommended twice per week during Recombinant G-CSF.

Cancer Patients Receiving Myelosuppressive Chemotherapy.

A transient increase in neutrophil counts is typically seen 1 to 2 days after initiation of Recombinant G-CSF therapy. However, for a sustained therapeutic response Recombinant G-CSF therapy should be continued following chemotherapy until the post nadir ANC reaches 10,000/mm3. Increases are observed in serum uric acid, lactic dehydrogenase and serum alkaline phosphates.

Drug Interaction

Drug Interaction between Recombinant G-CSF and other drugs have not been fully evaluated. Drugs which may potentiate the release of neutrophils, such as lithium, should be used with caution.

Carcinogenesis, Mutagenesis, Impairment of Fertility
The carcinogenic potential of Recombinant G-CSF has not been studied. Recombinant G-CSF failed to induce bacterial gene mutations in either the presence or absence of a drug metabolizing enzyme system. Recombinant G-CSF had no observed effect on the fertility of male or female rats, or on gestation at doses up to 500mcg/kg.

Pregnancy Category C
Recombinant G-CSF has been shown to have adverse effects in pregnant rabbits when given in doses 2 to 10 times the human dose. Since there are no adequate and well-controlled studies in pregnant women the effect, if any, of Recombinant G-CSF on the developing foetus or the reproductive capacity of the mother is unknown. However, the scientific literature describes transplacental passage of Recombinant G-CSF when administered to pregnant human by <30 hours prior to preterm delivery (<30weeks gestation). Recombinant G-CSF should be used during pregnancy only if the potential benefit justifies the potential risk to the foetus.

Nursing Mothers
It is not known whether Recombinant G-CSF is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised if Recombinant G-CSF is administered to a nursing woman.

Geriatric Use
No overall differences in safety or effectiveness are observed between elderly and younger subjects.

ADVERSE REACTIONS
In clinical trials patients receiving Recombinant G-CSF following nonmyeloablative cytotoxic chemotherapy, most adverse experiences are the sequelae of the underlying malignancy or cytotoxic chemotherapy. Medullary bone pain is the only consistently observed adverse reaction attributed to Recombinant G-CSF therapy. This bone pain is generally reported to be mild-to-moderate severity and can be controlled in most patients with non-narcotic analgesics.
Other adverse effects include nausea/vomiting, skeleton pain, alopecia, diarrhea, neutropenic fever, mucositis, fever, fatigue, anorexia, dyspnea, headache, cough, skin rash, chest paid, generalized weakness, sore throat stomatitis, constipation, paid (unspecified).
Spontaneously reversible elevations in uric acid, lactate dehydrogenase, and alkaline phosphates is seen in patients receiving Recombinant G-CSF therapy following cytotoxic chemotherapy, increases were generally mild-
to-moderate. There are no serious, life-threatening, or fatal adverse reaction attributed to Recombinant G-CSF therapy.

OVERDOSAGE
In cancer patients receiving Recombinant G-CSF as an adjunct to myelosuppressive chemotherapy, it is recommended to avoid the potential risks of excessive leukocytosis that Recombinant G-CSF therapy be discontinued if the ANC surpasses 10,000/mm3 after chemotherapy induced ANC nadir has occurred.
Patients in the BMT studies received up to 138 mcg/kg/day without toxic effects, although there was a flattening of the dose response curve above daily doses of greater than 10mcg/kg/day.

DOSAGE AND ADMINISTRATION
Cancer Patients Receiving Myelosuppressive Chemotherapy
The recommended starting dose of Recombinant G-CSF is 5mcg/kg/day, administered as a single daily injection by SC bolus injection by, short IV infusion (15 to 30 minutes), or by continuous SC or continuous IV infusion. A CBC and platelet count should be obtained before instituting Recombinant G-CSF therapy, and monitored twice weekly during therapy. Doses may be increased in increments of 5mcg/kg for each chemotherapy cycle, according to the duration and severity of the ANC nadir.
Recombinant G-CSF should be administered no earlier than 24 hours after the administration of cytotoxic chemotherapy. Recombinant G-CSF should not be administered in the period 24 hours before the administration of Chemotherapy.

Cancer Patients Receiving Bone Marrow Transplant
The recommended dose of Recombinant G-CSF following BMT is 10 mcg/kg/day given as an IV infusion of 4 to 24 hours, or as a continuous 24 hour SC infusion. For patients receiving BMT, the first dose of Recombinant G-CSF should be administered at least 24 hours after cytotoxic chemotherapy and at least 24 hours after bone marrow infusion
Peripheral Blood Progenitor Cell Collection and Therapy in Cancer Patients.
The recommended dose of Recombinant G-CSF for the mobilization of PBPC is 10 mcg/kg/day SC, either as a bolus or a continuous infusion. It is recommended that Recombinant G-CSF be given for at least 4 days before the first leukapheresis procedure and continued until the last leukapheresis.

Dilution
If required, Recombinant G-CSF may be diluted in 5% dextrose. Recombinant G-CSF diluted to concentrations between 5 and 15 mcg/ml
should be protected from adsorption to plastic materials by the addition to Albumin (Human) to a final concentration of 2mg/mL, when diluted in 5% dextrose or 5% dextrose plus Albumin (Human), Recombinant G-CSF is compatible with glass bottles, PVC and polyolefin IV bags, and polypropylene syringes. Dilution of Recombinant G-CSF to a final concentration of less than 5mcg/mL is not recommended at any time. Do not dilute with saline at any time, product may precipitate.

Storage
Filgrastim should be stored in the refrigerator from 2° C to 8° C (36 to 46 F). Avoid shaking. Prior to injection, Filgrastim may be allowed to reach room temperature for a maximum of 24 hours. Any vial or pre-filled syringe left at room temperature for greater than 24 hours should be discarded.

Packs
Single dose, pre-filled syringe of 300mcg/0.9ml and 480mcg/09ml